Ilu Preconditioning with a Ll Drop Strategy Based on Strongly Connected Components
نویسنده
چکیده
A class of incomplete LU-factorizations with a new strategy to discard ll for large sparse systems of equations, is presented. The speciic incomplete decomposition presented in this paper allows for a user speciied number of tasks to be performed in parallel. For testing the parallel eeciency as well as the preconditioning eeciency of this decomposition a number of test problems are solved using full GMRES as standard solver.
منابع مشابه
ILUT: A dual threshold incomplete LU factorization
In this paper we describe an Incomplete LU factorization technique based on a strategy which combines two heuristics. This ILUT factorization extends the usual ILU(0) factorization without using the concept of level of ll-in. There are two traditional ways of developing incomplete factorization preconditioners. The rst uses a symbolic factorization approach in which a level of ll is attributed ...
متن کاملA Multilevel Dual Reordering Strategy for Robust Incomplete LU Factorization of Indefinite Matrices
A dual reordering strategy based on both threshold and graph reorderings is introduced to construct robust incomplete LU (ILU) factorization of indefinite matrices. The ILU matrix is constructed as a preconditioner for the original matrix to be used in a preconditioned iterative scheme. The matrix is first divided into two parts according to a threshold parameter to control diagonal dominance. ...
متن کاملA Multi-Level Preconditioner with Applications to the Numerical Simulation of Coating Problems
A multi-level preconditioned iterative method based on a multi-level block ILU factoriza-tion preconditioning technique is introduced and is applied to the solution of unstructured sparse linear systems arising from the numerical simulation of coating problems. The coef-cient matrices usually have several rows with zero diagonal values that may cause stability diiculty in standard ILU factoriza...
متن کاملA parallel ILU strategy for solving Navier-Stokes equations on an unstructured 3D mesh
An iterative algorithm for solving a mixed finite element formulation of NavierStokes equations on a distributed memory computer is presented. The solver is a Krylov subspace method with a parallel preconditioner suitable for high latency clusters. Nodes are pivoted to minimize the number of synchronization points in each solver iteration. An unstructured mesh is decomposed into non-overlapping...
متن کاملParallel two level block ILU preconditioning techniques for solving large sparse linear systems
We discuss issues related to domain decomposition and multilevel preconditioning techniques which are often employed for solving large sparse linear systems in parallel computations. We introduce a class of parallel preconditioning techniques for general sparse linear systems based on a two level block ILU factorization strategy. We give some new data structures and strategies to construct loca...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1995